2012 ©
             Publication
Journal Publication
Research Title A modified GM-estimation for Robust Fitting of Mixture Regression Models  
Date of Distribution 12 August 2014 
Conference
     Title of the Conference The 2nd ISM International Statistical Conference 2014 with Applications in Sciences and Engineering 
     Organiser Universiti Malasia PAHANG  
     Conference Place M.S. Garden Hotel  
     Province/State Kuantan/ Pahang  
     Conference Date 12 August 2014 
     To 14 August 2014 
Proceeding Paper
     Volume 1643 
     Issue
     Page 264 - 269 
     Editors/edition/publisher Editors Mohd Sham Mohamad, Wan Nur Syahidah Wan Yusoff, Nor Aida Zuraimi Md Noar, Roslinazairimah Zakaria and Mohd Rashid Ab Hamid 
     Abstract In the mixture regression models, the regression parameters are estimated by maximum likelihood estimation (MLE) via EM algorithm. Generally, maximum likelihood estimation is sensitive to outliers and heavy tailed error distribution. The robust method, M-estimation can handle outliers existing on dependent variable only for estimating regression coefficients in regression models. Moreover, GM-estimation can handle outliers existing on dependent variable and independent variables. In this study, the modified GM-estimations for estimating the regression coefficients in the mixture regression models are proposed. A Monte Carlo simulation is used to evaluate the efficiency of the proposed methods. The results show that the proposed modified GM-estimations approximate to MLE when there are no outliers and the error is normally distributed. Furthermore, our proposed methods have more efficient than the MLE, when there are leverage points. 
Author
555020138-4 Mr. SLUN BOOPPASIRI [Main Author]
Science Master's Degree

Peer Review Status ไม่มีผู้ประเมินอิสระ 
Level of Conference นานาชาติ 
Type of Proceeding Full paper 
Type of Presentation Oral 
Part of thesis true 
ใช้สำหรับสำเร็จการศึกษา ไม่เป็น 
Presentation awarding false 
Attach file
Citation 0

<
forum