Abstract |
Nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription factor regulating antioxidant, cytoprotective, and metabolic enzymes, plays important roles in drug resistance
and proliferation in cancer cells. The present study was aimed to examine the expression of Nrf2 in connection with chemotherapeutic drug sensitivity on cholangiocarcinoma (CCA) cells. The basal levels of Nrf2 protein in cytosol and nuclear fractions of CCA cells were determined usingWestern blot analysis. Nrf2 mRNA expression of KKU-M156 and KKU-100 cells, representatives of low and high-Nrf2-expressing CCA cells, were silenced using siRNA. After knockdown of Nrf2, the sensitivity of those cells to the cytotoxicity of cisplatin (Cis) was enhanced in association with the increased release of AIF and downregulation of Bcl-xl in both cells. Also, knockdown of Nrf2 suppressed the replicative capability of those cells in colony-forming assay and enhanced their sensitivity to antiproliferative activity of Cis
and 5-fluorouracil. The chemosensitizing effect was associated with the suppressed expression of Nrf2-regulated and Cisinduced antioxidant and metabolic genes including NQO1, HO-1, GCLC, TXN, MRP2, TKT, and G6PD. In cell cycle analysis, Nrf2 knockdown cells were arrested at G0/G1 phase and combination with Cis increased the accumulation of cells at S phase. The suppression of KKU-M156 cell proliferation was associated with the downregulation of cyclin D1 and increased level of p21. Inhibition of Nrf2 could be a novel strategy
in enhancing antitumor activity of chemotherapeutic agent in control of resistant cancer. |