|
|
Publication
|
| Title of Article |
On list chromatic number of L(2,0)-labeling of a complete bipartite graph K_2,n |
| Date of Acceptance |
21 February 2016 |
| Journal |
| Title of Journal |
Far East Journal of Mathematical Sciences (FJMS) |
| Standard |
SCOPUS |
| Institute of Journal |
Pushpa Publishing House |
| ISBN/ISSN |
ISSN:0972-0871 |
| Volume |
99 |
| Issue |
10 |
| Month |
May |
| Year of Publication |
2016 |
| Page |
1571-1582 |
| Abstract |
\begin{abstract}For a graph $G=(V,E)$, an $L(i,j)$-labeling is a function $f$ from the vertex set $V$ to the set of all nonnegative intergers such that $|f(x)-f(y)|\geq i$ if $d(x,y)=1$ and $|f(x)-f(y)|\geq j$ if $d(x,y)=2$ where $d(x,y)$ denotes the distance between vertices $x$ and $y$ in $G$. Let $\mathscr{L}(G)=\{L(v):v\in V\}$ be a list assignment. Then $G$ is $\mathscr{L}$-$L(i,j)$-colorable if there exists an $L(i,j)$-labeling $f$ of $G$ such that $f(v)\in L(v)$ for all $v\in V$. If $G$ is $\mathscr{L}$-$L(i,j)$-colorable for every list assignment $\mathscr{L}$ with $|L(v)|\geq k$ for all $v\in V$, then $G$ is said to be $k$-$L(i,j)$-choosable. The list chromatic number $Ch_{i,j}(G)$ is the minimum $k$ such that $G$ is $k$-$L(i,j)$-choosable. \\
\indent Let $K_{2,n}$ be a complete bipartite graph with the sizes of partite sets are 2 and $n$. In this paper, we find $Ch_{2,0}(K_{2,n})$ for each $n$ except $n=11,12$.
\end{abstract} |
| Keyword |
L(i,j)-labeling, list coloring, graph coloring |
| Author |
|
| Reviewing Status |
มีผู้ประเมินอิสระ |
| Status |
ตีพิมพ์แล้ว |
| Level of Publication |
นานาชาติ |
| citation |
false |
| Part of thesis |
true |
| ใช้สำหรับสำเร็จการศึกษา |
ไม่เป็น |
| Attach file |
|
| Citation |
0
|
|
|
|
|
|
|
|
|