2012 ©
             ข้อมูลการเผยแพร่ผลงาน
การเผยแพร่ในรูปของบทความวารสารทางวิชาการ
ชื่อบทความที่เผยแพร่ A Comparison of Muskingum routing and Artificial Neural Networks for Flood Forecasting in Mekong River  
วัน/เดือน/ปี ที่เผยแพร่ 9 พฤษภาคม 2557 
การประชุม
     ชื่อการประชุม The 3rd International Congress on Natural Sciences and Engineering 
     หน่วยงาน/องค์กรที่จัดประชุม Higher Education Forum 
     สถานที่จัดประชุม Kyoto Research Park on the 4th floor 
     จังหวัด/รัฐ Kyoto Japan 
     ช่วงวันที่จัดประชุม 7 พฤษภาคม 2557 
     ถึง 9 พฤษภาคม 2557 
Proceeding Paper
     Volume (ปีที่)
     Issue (เล่มที่)
     หน้าที่พิมพ์ 400-407 
     Editors/edition/publisher  
     บทคัดย่อ Overflow in the lower part of the Mekong River, which happens regularly during rainy season, is beneficial to its riparian areas in terms of agriculture and fishery. Catastrophic floods, however, can occur once in 5 to 6 years and cause damage to life and property. Therefore, flood prevention is not quite a suitable measure but forecasting with early warning is a must to mitigate inundated losses. We compared 2 flood forecasting methods, Muskingum routing technique (MR) and Artificial Neural Networks (ANN), at Chiang Khan as upstream monitoring site and the city of Nong Khai, Thailand, the downstream target site which is 184 km apart. Daily flow data of the 2 stations from 2001 to 2010 were used in this study, the data of the years 2001 to 2003 were used for calibrations and 4 pairs of correspondent flood hydrographs each from 2004, 2006, 2008, and 2010 were used for comparisons. Three indices, i.e. the coefficient of determination (R2), the Nash-Sutcliffe efficiency index (EI), and the relative error (RE), were used for comparisons. The R2 for MR and ANN are in the ranges of 0.88-0.96 and 0.85-0.96, respectively. The EI for MR and ANN are -0.04-0.95 and 0.87- 0.96, respectively. The RE are 0.06-0.11 and 0.02-0.08 for MR and ANN, respectively. The high values of R2 show that both methods are accurate in the sense of random error. The negative and small EI values of MR method indicate its systematic error is high especially when the flood discharge is low. The RE values for ANN are less than those of MR method showing that the ANN is superior to the MR. 
ผู้เขียน
557040043-7 น.ส. ณัฐชญา เขตกระโทก [ผู้เขียนหลัก]
คณะวิศวกรรมศาสตร์ ปริญญาเอก ภาคปกติ

การประเมินบทความ (Peer Review) มีผู้ประเมินอิสระ 
มีการเผยแพร่ในระดับ นานาชาติ 
รูปแบบ Proceeding Full paper 
รูปแบบการนำเสนอ Oral 
เป็นส่วนหนึ่งของวิทยานิพนธ์ เป็น 
ผลงานที่นำเสนอได้รับรางวัล ไม่ได้รับรางวัล 
แนบไฟล์
Citation 0

<
forum