| Title of Article |
On the Generalized Solutions of a Certain Fourth Order Euler Equations |
| Date of Acceptance |
18 July 2017 |
| Journal |
| Title of Journal |
Journal of Nonlinear Sciences and Applications |
| Standard |
ISI |
| Institute of Journal |
International Scientific Research Publications |
| ISBN/ISSN |
|
| Volume |
|
| Issue |
|
| Month |
|
| Year of Publication |
2017 |
| Page |
|
| Abstract |
In this paper, we purpose the generalized solutions of the fourth order Euler differential equations $t^4y^{(4)}(t)+t^3y'''(t)+t^2y''(t)+ty'(t)+my(t)=0,$ where $m$ is some integers and $t\in\mathbb{R}$ using Laplace transform technique. We find that the types of the solutions depend on the values of $m$. Precisely, we have a distributional solution for $m=-k^4-5k^3-9k^2-4k$ and a weak solution for $m=-k^4+5k^3-9k^2+4k,$ where $k\in\mathbb{N}.$ |
| Keyword |
generalized solution, distributional solution, Euler equation, Dirac delta function |
| Author |
|
| Reviewing Status |
มีผู้ประเมินอิสระ |
| Status |
ได้รับการตอบรับให้ตีพิมพ์ |
| Level of Publication |
นานาชาติ |
| citation |
false |
| Part of thesis |
true |
| ใช้สำหรับสำเร็จการศึกษา |
ไม่เป็น |
| Attach file |
|
| Citation |
0
|
|
|