2012 ©
             ข้อมูลการเผยแพร่ผลงาน
การเผยแพร่ในรูปของบทความวารสารทางวิชาการ
ชื่อบทความ Efficient algorithms based on the k-means and Chaotic League Championship Algorithm for numeric, categorical, and mixed-type data clustering 
วัน/เดือน/ปี ที่ได้ตอบรับ 30 ธันวาคม 2560 
วารสาร
     ชื่อวารสาร Expert Systems with Applications 
     มาตรฐานของวารสาร ISI 
     หน่วยงานเจ้าของวารสาร Expert Systems with Applications 
     ISBN/ISSN 0957-4174 
     ปีที่ 2017 
     ฉบับที่ 90 
     เดือน December
     ปี พ.ศ. ที่พิมพ์ 2560 
     หน้า 146-167 
     บทคัดย่อ The success rates of the expert or intelligent systems depend on the selection of the correct data clusters. The k-means algorithm is a well-known method in solving data clustering problems. It suffers not only from a high dependency on the algorithm’s initial solution but also from the used distance function. A number of algorithms have been proposed to address the centroid initialization problem, but the produced solution does not produce optimum clusters. This paper proposes three algorithms (i) the search algorithm C-LCA that is an improved League Championship Algorithm (LCA), (ii) a search clustering using C-LCA (SC-LCA), and (iii) a hybrid-clustering algorithm called the hybrid of k-means and Chaotic League Championship Algorithm (KSC-LCA) and this algorithm has of two computation stages. The C-LCA employs chaotic adaptation for the retreat and approach parameters, rather than constants, which can enhance the search capability. Furthermore, to overcome the limitation of the original k-means algorithm using the Euclidean distance that cannot handle the categorical attribute type properly, we adopt the Gower distance and the mechanism for handling a discrete value requirement of the categorical value attribute. The proposed algorithms can handle not only the pure numeric data but also the mixed-type data and can find the best centroids containing categorical values. Experiments were conducted on 14 datasets from the UCI repository. The SC-LCA and KSC-LCA competed with 16 established algorithms including the k-means, k-means++, global k-means algorithms, four search clustering algorithms and nine hybrids of k-means algorithm with several state-of-the-art evolutionary algorithms. The experimental results show that the SC-LCA produces the cluster with the highest F-Measure on the pure categorical dataset and the KSC-LCA produces the cluster with the highest F-Measure for the pure numeric and mixed-type tested datasets. Out of 14 datasets, there were 13 centroids produced by the SC-LCA that had better F-Measures than that of the k-means algorithm. On the Tic-Tac-Toe dataset containing only categorical attributes, the SC-LCA can achieve an F-Measure of 66.61 that is 21.74 points over that of the k-means algorithm (44.87). The KSC-LCA produced better centroids than k-means algorithm in all 14 datasets; the maximum F-Measure improvement was 11.59 points. However, in terms of the computational time, the SC-LCA and KSC-LCA took more NFEs than the k-means and its variants but the KSC-LCA ranks first and SC-LCA ranks fourth among the hybrid clustering and the search clustering algorithms that we tested. Therefore, the SC-LCA and KSC-LCA are general and effective clustering algorithms that could be used when an expert or intelligent system requires an accurate high-speed cluster selection. 
     คำสำคัญ Data clustering, Search clustering algorithm, Hybrid clustering algorithm, League Championship Algorithm (LCA), Chaos optimization algorithms (COA), Mixed-type data 
ผู้เขียน
577020024-5 นาย ธนัชพงษ์ วังคำหาญ [ผู้เขียนหลัก]
คณะวิทยาศาสตร์ ปริญญาเอก ภาคปกติ

การประเมินบทความ มีผู้ประเมินอิสระ 
สถานภาพการเผยแพร่ ตีพิมพ์แล้ว 
วารสารมีการเผยแพร่ในระดับ นานาชาติ 
citation ไม่มี 
เป็นส่วนหนึ่งของวิทยานิพนธ์ เป็น 
แนบไฟล์
Citation 0