|
Publication
|
Title of Article |
Anthocyanin complex exerts anti-cholangiocarcinoma activities and improves the efficacy of drug treatment
in a gemcitabine-resistant cell line |
Date of Acceptance |
1 March 2018 |
Journal |
Title of Journal |
International Journal of Oncology |
Standard |
ISI |
Institute of Journal |
Spandidos Publications |
ISBN/ISSN |
1019-6439 |
Volume |
2018 |
Issue |
|
Month |
|
Year of Publication |
2018 |
Page |
|
Abstract |
Cholangiocarcinoma (CCA) is a deleterious bile duct tumor with poor prognosis and is relatively resistant to chemotherapy. Therefore, alternative or supplementary agents with anticancer and chemosensitizing activities may be useful for the treatment of CCA. A novel anthocyanin complex (AC) nanoparticle, developed from extracts of cobs of purple waxy corn and petals of blue butterfly pea, has exhibited chemopreventive potential in vivo. In the present study, the anti-CCA activities of AC and their underlying molecular mechanisms were investigated further in vitro using a CCA cell line (KKU213). The potential use of AC as a chemosensitizer was also evaluated in a gemcitabine-resistant CCA cell line (KKU214GemR). It was demonstrated that AC treatment suppressed proliferation of KKU213 CCA cells in dose- and time-dependent manners. AC treatment also induced apoptosis and mitochondrial superoxide production, decreased clonogenicity of CCA cells, and downregulated forkhead
box protein M1 (FOXM1), nuclear factor-κB (NF-κB) and pro-survival protein B-cell lymphoma-2 (Bcl-2). The expression of endoplasmic reticulum (ER) stress-response proteins, including protein kinase RNA-like ER kinase, phosphorylated eIF2α, eukaryotic initiation factor 2α and activating transcription factor 4, also decreased following AC treatment. It was also identified that AC treatment inhibited KKU214GemR cell proliferation in dose- and time-dependent manners. Co-treatment of KKU214GemR cells with low doses of AC together with gemcitabine significantly enhanced efficacy of the latter against this cell line. Therefore, it is suggested that AC treatment is cytotoxic to KKU213 cells, possibly via downregulation of FOXM1, NF-κB, Bcl-2 and the ER stress response, and by induction of mitochondrial superoxide production. AC also sensitizes KKU214GemR to gemcitabine treatment, which may have potential for overcoming drug resistance of CCA. |
Keyword |
Anthocyanin complex, Chemosensitizer, Cholangiocarcinoma, Forkhead Box Protein M1, Endoplasmic reticulum stress, Gemcitabine |
Author |
|
Reviewing Status |
มีผู้ประเมินอิสระ |
Status |
ตีพิมพ์แล้ว |
Level of Publication |
นานาชาติ |
citation |
false |
Part of thesis |
true |
Attach file |
|
Citation |
0
|
|
|
|
|
|
|