2012 ©
             Publication
Journal Publication
Title of Article Canopy Structure and Photosynthetic Performance of Irrigated Cassava Genotypes Growing in Different Seasons in a Tropical Savanna Climate 
Date of Acceptance 18 December 2020 
Journal
     Title of Journal agronomy-basel 
     Standard SCOPUS 
     Institute of Journal Basel, Switzerland 
     ISBN/ISSN 10.3390/agronomy10122018 
     Volume 2020 
     Issue 10 (12) 
     Month December
     Year of Publication 2020 
     Page 1-37 
     Abstract Growth and photosynthesis performance of cassava during early vegetative growth are important determinants of final biomass. The objective of this work was to investigate canopy structure and photosynthesis performance of four cassava genotypes (Rayong 9, Rayong 11, Kasetsart 50, and CMR38-125-77) growing under irrigation at 3 and 6 months after planting (3MAP and 6MAP). Data for the 3MAP plants were collected from cassava planted on 30 June (Rainy PD), 10 November (Cool PD1), and 15 December (Cool PD2) 2015; and for the 6MAP from those planted on 20 April 2015 (Hot PD), Rainy PD, and Cool PD1. The plants growing in the rainy season had significantly higher leaf area index (LAI) than those growing in the cool and hot seasons. Consequently, they had lower percentage light penetration at the bottom of canopy, and therefore more light interception through the canopy, and hence a higher mean net photosynthesis rate (Pn) across the six canopy levels. At the 3MAP, which is the stage of maximum rate of leaf and stem growth, the Rainy PD and Cool PD2 plants of CMR38-125-77 showed the highest LAI and highestmean Pn. Similarly, the Cool PD1 plants of Kasetsart 50 showed the highest LAI and highest mean Pn. In contrast, at 6MAP during the stage of active starch accumulation in storage roots, the genotypes with the highest mean Pn were the ones having an intermediate (CMR38-125-77 for the Hot PD) or low LAI (Rayong 9 for the Rainy PD, and CMR38-125-77 for the Cool PD1). Data on variations in canopy structure and photosynthesis potentials of different cassava genotypes in response to seasonal variations may be useful for crop growth modeling and may be employed as a criterion for the selection of suitable genotypes for each growing season. 
     Keyword Manihot esculenta; cassava genotypes; planting date; canopy architecture; plant type; forking; light penetration; photosynthesis 
Author
597020058-0 Miss SUPRANEE SANTANOO [Main Author]
Science Doctoral Degree

Reviewing Status มีผู้ประเมินอิสระ 
Status ตีพิมพ์แล้ว 
Level of Publication นานาชาติ 
citation true 
Part of thesis true 
Attach file
Citation 0